Year 13 Computer Science Revision Timetable 2025

OCR A-level Computer Science

We will be asking you to revise different topics each week using weekly revision activities via a Showbie class to be completed as homework and during revision lessons. Class code: **VHNPB**

Resources

- Seneca https://senecalearning.com/en-GB/revision-notes/a-level/computer-science/ocr
- Craig n Dave Online Videos https://student.craigndave.org/h046-h446
- Isaac Computing https://isaaccomputerscience.org/
- Ada Computing https://adacomputerscience.org/
- Quizlet https://quizlet.com/join/6mPgbfnVY

Exam Dates

A-Level Programming Project 15th May Deadline

Exam Date	Examination Code	Title	Exam Time	Exam Duration
11/06/2025	H446/01	Computer systems - Written Paper	AM	2h 30m
18/06/2025	H446/02	Algorithms and programming - Written Paper	AM	2h 30m

Date	Paper 1	Paper 2	Revision Sessions
Week 1 Feb Half term	Structure and function of the processor ALU, CU, Registers, Buses, data, address and control and how they relate to assembly language. FDE Cycle and its effects on the registers. CPU performance, pipelining and architectures. GPUs and their uses (including those not related to graphics). Multicore and Parallel system - Pipelining Types of Processors CISC and RSIC, GPUs and Multicore and Parallel systems. Input, output and Storage	Elements of computational thinking Thinking abstractly Thinking ahead Thinking procedurally Thinking logically Thinking concurrently	Tuesday Afterschool L2 FDE cycle Von Neumann, Harvard and contemporary processor architecture. Types of processor The differences between and uses of CISC and RISC processors.
Week 2	Different types of devices, Magnetic, flash and optical storage, RAM and ROM, Virtual Storage Systems Software Operating Systems Types Real time Distributed Embedded Multi-tasking Multi-user Memory Management Interrupts Scheduling BIOS Device Drivers Virtual Machines.	Programming techniques Variables vs Constants Programming Constructs (Selection, Sequence, Iteration) Scope of variables (Local vs Global) Data types Modularity (Function vs Procedure) Passing by value vs passing by reference Arrays Files DE Tools Type of errors and suitable test data Programming Standards and maintainability	System software Interrupts, interrupt service routines and scheduling Operating system types

Week 3	Applications Generation Application software	Algorithms Analysis and design of algorithms for a	Addition and subtraction of floating
	Utilities	given situation.	point binary
	Open source vs closed source.	☐ Bubble Sort	Point billary
	Translators: Interpreters, compilers and assemblers.	insertion sort	
	Stages of compilation	merge sort	
	Linkers and loaders and use of libraries	quick sort	
	How compliers work	Binary search and linear search.	
Week 4	Data Types	Programming techniques	Floating point numbers
	Binary calculations		and normalisation.
	sign and magnitude	Procedural vs OO programming	Addition and
	two's complement	Class, objects, attributes, constructor	subtraction of floating
	Hexadecimal	method, getter/setter methods	point binary
	☐ Character Sets (ASCII AND UNICODE CHARACTER SETS)	encapsulation, inheritance,	
	Addition and subtraction of floating point binary	polymorphism	
Week 5	Databases	Algorithms Stacks & Queues	Data Structures
	Relational database, flat file, primary key, foreign key,	Explain how stacks and queues work as	Stacks and queues
	secondary key, entity relationship modelling,	dynamic, linear data structures.	algorithms
	normalisation and indexing.	Algorithms for stack push and pop	Linked Lists
	☐ Methods of capturing, selecting, managing and	Algorithms for queues dequeue and	
	exchanging data.	enqueue for both linear and circular	
		queues	
\\\ - \	ML., and a	Use of pointers	
Week 6	Networks	Algorithms Linked Lists	
	Characteristics of networks and the importance of	Describe a linked list, as a dynamic	OOP pseudo coding
	protocols and standards.	structure, the use of nodes and	
	☐ The internet structure: ☐ The TCP/IP Stack.	pointers, class node. Algorithm for inserting a node. Describe how to	
	DNS	remove a node. Describe how to	
	Protocol layering.	traverse a linked list.	
	LANs and WANs.	ilaveise a ili ikea iisi.	
	Packet and circuit switching.	Record data structure. Algorithm for	
	Network security and threats, use of firewalls, proxies	creating a record structure, adding	
	and encryption.	new data, array of records. Compare	
	Network hardware.	record and class data structure -	
	Client-server and peer to peer.	similarities and differences.	
Week 7	Software Development methodologies	Algorithms	Binary trees and graphs

	 Waterfall lifecycle, agile methodologies, extreme programming, the spiral model and rapid application development. Merits and drawbacks of each methodology 	 Describe a Binary Tree, how to add and delete a node. Describe the Tree Traversals: DFS (In order, post and pre) BFS Describe different types of graphs Describe traversals (DFS and BFS) Algorithms: Binary tree traversal algorithms Dijkstra's and A* shortest path algorithm 	Shortest path algorithms
Week 8 Easter Holidays	Data types Floating point numbers Addition, Subtraction Normalisation Bitwise manipulation and masks	Tracing algorithms and Recursion Trace an algorithm Recursive vs iterative algorithms Adv/ disadv	N/A
Week 9 Easter Holidays	Types of Programming Language ☐ Need for and characteristics of a variety of programming paradigms. ☐ Procedural, Assembly, Object-oriented languages. ☐ LMC ☐ Modes of address memory	BigO Time and memory efficiency Constant Logarithmic Linear Polynomial Exponential	N/A
Week 10	Compression Lossy vs Lossless compression. Encryption and Hashing Run length encoding and dictionary coding for lossless compression. Symmetric and asymmetric encryption.	Computational Methods Backtracking Data mining Heuristics Performance modelling Visualisation Pipelining Divide and conquer	Database Normalisation and SQL
Week 11	Web Technology ☐ HTML, CSS and JavaScript.	Paper 2 Practice	HTML and CSS

	 Search engine indexing. PageRank algorithm. Server and client-side processing. 		
Week 12	Boolean Algebra Logic Gates and Truth Tables	Paper 2 Practice	Boolean Algebra
	Simplifying Boolean expressions Karnaugh maps		
Week 13	Adders and D-type flip-flops Legal, moral, cultural and ethical issues	Paper 2 Practice	Compression, Hashing, and
	Computing related legislation The Data Protection Act 1998. The Computer Misuse Act 1990. The Copyright Design and Patents Act 1988. The Regulation of Investigatory Powers Act 2000.		Encryption
Week 14	Moral and ethical Issues The individual moral, social, ethical and cultural opportunities and risks of digital technology: Computers in the workforce. Automated decision-making. Artificial intelligence. Environmental effects. Censorship and the Internet. Monitor behaviour. Analyse personal information. Piracy and offensive communications. Layout, colour paradigms, and character sets.		Moral and ethical issues
Week 15	Past Paper Practice		
Week 16 Week 17	Banas 1 Evans Communios Systems Whitten Banas		
week 1/	Paper 1 Exam Computer Systems - Written Paper		
Week 18	ek 18 Paper 2 Exam Algorithms and Programming - Written Paper		